Main unit Specifications

Basic specifications (Accuracy guranteed for 1 year, Postadjustment accuracy guaranted for 1 year)	
Measurement functions	MEMORY (high-speed recording) RECORDER (real-time recording) X-Y RECORDER (X-Y real-time recording) FFT (frequency analysis)
Number of input units	[8 analog input modules]: 16 analog channels +16 logic channels (standard) [5 analog input modules +3 logic input modules]: 10 analog channels +64 logic channels (standard 16 channels +48 channels in logic input modules) * For analog units, channels are isolated form each other and from frame GND. For logic units and internal standard logic terminals, all channels has common GND.
Maximum sampling rate	$20 \mathrm{MS} /$ second (50 ns period, all channels simultaneously) External sampling ($10 \mathrm{MS} /$ second, 100 ns period)
Internal memory	MR8847-01: Total 64 M-words (Memory expansion: none) $32 \mathrm{MW} / \mathrm{ch}$ (using 2 Analog channels), to $4 \mathrm{MW} / \mathrm{ch}$ (using 16 Analog channels) MR8847-02: Total 256 M-words (Memory expansion: none) $128 \mathrm{MW} / \mathrm{ch}$ (using 2 Analog channels), to $16 \mathrm{MW} / \mathrm{ch}$ (using 16 Analog channels) MR8847-03: Total 512 M-words (Memory expansion: none) 256 MW/ch (using 2 Analog channels), to $32 \mathrm{MW} / \mathrm{ch}$ (using 16 Analog channels) Note: 1 word $=2$ bytes (12-bits or 16 -bits), therefore 64 Mega-word $=128$ Mega-bytes. Note: Internal memory is allocated depending on the number of channels used.
Data storage media *2 Factory installation only	CF card slot (standard) $\times 1$ (up to 2GB, FAT, or FAT-32 format) Hard disk drive $\times 1\left(80 \mathrm{~GB}\right.$, optional Model $\left.9664^{* 2}\right)$ USB memory stick (USB 2.0)
Backup functions (At $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$)	Clock and parameter setting backup: at least 10 years Waveform backup function: none
External control connectors	Terminal block: External trigger input, Trigger output, External sampling input, Two external outputs (GO/NG output), Three external inputs (start, stop, print input)
External interfaces	LAN: 100BASE-TX (DHCP, DNS supported, FTP server, HTTP server) USB: USB2.0 compliant, series A receptacle $\times 1$, series B receptacle $\times 1$, (File transfer HDD/ CF card to PC, or remort control from PC)
Environmental conditions (No condensation)	Operation: $-10^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right)$ to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right), 20 \%$ to 80% rh Printer use: $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right), 20 \%$ to 80% rh HD use: $5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right), 20 \%$ to 80% rh Storage: $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$ to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right), 90 \%$ rh or less
Compliance standard	Safety: EN61010, EMC: EN61326, EN61000-3-2, EN61000-3-3
Power supply	100 to $240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ 10 to 28 V DC (use the DC POWER UNIT 9784 : Factory installation only)
Power consumption	130 VA max. (Printer not used), 220 VA max. (Printer used)
Dimensions and mass	Approx. 351 mm (13.82 in) $\mathrm{W} \times 261 \mathrm{~mm}$ (10.28 in) $\mathrm{H} \times 140 \mathrm{~mm}$ (5.51 in) D, 7.6 kg (268.1 oz) (main unit only)
Supplied accessories	Instruction Manual $\times 1$, Measurement Guide $\times 1$, Application Disk (Wave Viewer Wv, Communication Commands table) $\times 1$, Power cord $\times 1$, Input cord label $\times 1$, USB cable $\times 1$, Printer paper $\times 1$, Roll paper attachment $\times 2$
Internal Printer	
Features	Printer paper one-touch loading, high-speed thermal printing
Recording paper	$216 \mathrm{~mm}(8.50 \mathrm{in}) \times 30 \mathrm{~m}(98.43 \mathrm{ft})$, thermal paper roll (use 9231 paper) Recording witdh: $200 \mathrm{~mm}(7.87$ in 20 division full scale, 1 div $=10$ $\mathrm{mm}(0.39$ in) 80 dots
Recording speed	Max. 50 mm (1.97 in)/sec
Paper feed density	10 lines/mm
Display	
Display	10.4 inch SVGA-TFT color LCD (800×600 dots) (Time axis 25 div \times Voltage axis 20 div, $\mathrm{X}-\mathrm{Y} 20$ div $\times 20$ div)
Languages	English, Japanese, Korean, Chinese
Waveform display zoom/compression	Time axis: $\times 10$ to $\times 2$ (zoom at MEMORY function only), $\times 1, \times 1 / 2$ to $\times 1 / 20,000$, Voltage axis: $\times 100$ to $\times 2, \times 1, \times 1 / 2$ to $\times 1 / 10$
Variable display	Upper/Lower limit set, display/div set
Scaling	10:1 to 1000:1, automatic scaling for various probes Manual scaling (conversion ratio setting, 2-point setting, unit setting)
Comment input	Alphanumeric input (title, analog and logic channels) Simple input, history input, phrase input
Logic waveform	Display point move 1% step, Line width 3 types
Display partition	Max. Eight divisions
Monitor function	Input level monitor Numerical value (Sampling $10 \mathrm{kS} /$ fixed, refresh rate 0.5 s)
Other display functions	- Waveform inversion (positive/negative) - Cursor measurement (A, B, 2-cursor, for all channels) - Vernier function (amplitude fine adjustment) - Zoom function (horizontal screen division, zoomed waveform shown in lower section) - 16 selectable colors for waveform display - Zero position shift in 1% steps for analog waveform - Global zero adjust for all channels and all ranges

MEMORY (High-speed recording)	
Time axis	$5 \mu \mathrm{~s}$ to $5 \mathrm{~min} /$ div (100 samples/div) 26 ranges, External sampling (100 samples/div, or free setting), Time axis zoom: $\times 2$ to $\times 10$ in 3 stages, compression: $1 / 2$ to $1 / 20,000$ in 13 stages
Sampling period	$1 / 100$ of time axis range (minimum 50 ns period)
Recording length	MR8847-01: 16 ch mode: 25 - 20,000 div, 2 ch mode: 25 - 200,000 div (built-in presets) or arbitrary setting in 1 -div steps (max. 320,000 div) MR8847-02: 16 ch mode: 25 -100,000 div, 2 ch mode: 25-1,000,000 div (built-in presets) or arbitrary setting in 1-div steps (max. 1,280,000 div) MR8847-03: 16 ch mode: 25 -200,000 div, 2 ch mode: $25-2,000,000$ div (built-in presets) or arbitrary setting in 1-div steps (max. 2,560,000 div)
Pre-trigger	Record data from before the trigger point at 0 to $+100 \%$ or -95% of the recording length in 15 stages, or in 1 div step settings
Numerical calculation	- Simultaneous calculation for up to 16 selected channels Average value, effective (rms) value, peak to peak value, maximum value, time to maximum value, minimum value, time to minimum value, period, frequency, rise time, fall time, standard deviation, area value, $\mathrm{X}-\mathrm{Y}$ area value, specified level time, specified time level, pulse width, duty ratio, pulse count, four arithmetic operations, Time difference, phase difference, high-level and low-level - Calculation result evaluation output: GO/NG (with open-collector 5 V output) - Automatic storing of calculation results
Waveform processing	For up to 16 freely selectable channels, the following functions can be performed (results are automatically stored): Four arithmetic operations, absolute value, exponentiation, common logarithm, square root, moving average, differentiation (primary, secondary), integration (primary, secondary), parallel displacement along time axis, trigonometric functions, reverse trigonometric functions
Memory segmentation	- Max. 1024 blocks, sequential storage, multi-block storage
Other functions	- No logging - X-Y waveform synthesis (1-screen, 4 -screens) - Overlay (always overlay when started/overlay only required waveforms) - Automatic/ Manual/ A-B cursor range printing/ Report printing

RECORDER (Real-time recording)

Time axis	10 ms to 1 hour/div, 19 ranges, time axis resolution 100 points/div Note: Out of data acquired at selected sampling rate, only maximum and minimum value data determined using 100 points/div units are stored Time axis compression selectable in 13 steps, from $\times 1 / 2$ to $\times 1 / 20,000$
Sampling rate	$1 / 10 / 100 \mu \mathrm{~s} 1 / 10 / 100 \mathrm{~ms}$ (selectable from 1/100 or less of time axis)
Real-time printing	Supported * Real-time printing is possible at time axis settings slower than $500 \mathrm{~ms} / \mathrm{div}$ * Delayed print is performed when recording length is not set to "Continuous" and time axis setting is $10 \mathrm{~ms}-200 \mathrm{~ms} / \mathrm{div}$ * When recording length is set to "Continuous" and time axis setting is 10 ms - $200 \mathrm{~ms} /$ div, manual printing can be performed after measurement stop
Recording length	MR8847-01: Built-in presets of 25-20,000 div, or "Continuous" or arbitrary setting in 1 -div steps (max. 20,000 div) MR8847-02: Built-in presets of $25-50,000$ div, or "Continuous" or arbitrary setting in 1 -div steps (max. 80,000 div) MR8847-03: Built-in presets of $25-100,000$ div, or "Continuous" or arbitrary setting in 1 -div steps (max. 160,000 div)
Additional recording	Supported (recording is resumed without overwriting previous data)
Waveform memory	MR8847-01: Store data for most recent 20,000 div in memory MR8847-02: Store data for most recent 80,000 div in memory MR8847-03: Store data for most recent 160,000 div in memory Note: Backward scrolling and re-printing available
Auto save	Data are automatically saved on CF card, USB memory stick or internal HDD after measurement stops
Other functions	- No logging - Manual/ A-B cursor range printing/ Report printing
X-Y RECORDER (X-Y real-time recording)	
Sampling period	1/10/100 ms (dot), 10/100 ms (line)
Recording length	Continuous
Screen, Printing	Split screen (1 or 4), Manual printing only
Number of X-Y	1 to 8 phenomenon
$X-Y$ channel setting	Any 8 channels out of 16 can be selected for X axis and Y axis respectively
$X-Y$ axis resolution	25 dots/div (screen), horizontal 80 dots/div \times vertical 80 dots/div (printer)
Waveform memory	Sampling data for last 4,000,000 points are stored in memory
Pen up/down	Simultaneous for all phenomena
External pen control	Possible via external input connector (simultaneous up/down for all phenomena)

Trigger functions

Trigger mode	MEMORY (high-speed recording), FFT: Single, Repeat, Auto RECORDER (real-time recording): Single, Repeat
Trigger sources	CH1 to CH16 (analog), Standard Logic 16ch + Logic Unit (Max. 3 units 48 channels), External (arise of 2.5V or terminal short circuit), Timer, Manual (either ON or OFF for each source), Logical AND/OR of sources
	- Level: Triggering occurs when preset voltage level is crossed (upwards or downwards) \bullet Voltage drop: Triggering occurs when voltage drops below peak voltage setting (for 50/60 Hz AC power lines only) - Window: Triggering occurs when window defined by upper and lower limit is entered or exited \bullet Period: Rising edge or falling edge cycle of preset voltage value is monitored and triggering occurs when defined cycle range is exceeded - Glitch: Triggering occurs when pulse width from rising or falling edge of preset voltage value is under run \bullet Event setting: Event count is performed for each source, and triggering occurs when a preset count is exceeded \bullet Logic: 1, 0, or \times, Pattern setting
Trigger types	

FFT function

	Storage waveform, Linear spectrum, RMS spectrum, Power spectrum, Density of power spectrum, Cross power spectrum, Auto-correlation function, Histogram, Transfer function, Cross- correlation function, Impulse response, Coherence function, $1 / 1$ Octave analysis, $1 / 3$ Octave analysis, LPC analysis, Phase spectrum
Analysis mode	

Dimensions and mass: approx. 106 (4.17in) W $\times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74in) D mm, approx. 250 g (8.8 oz) Accessories: None	
ANALOG UNIT 8966 (Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time and zero adjustment; Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)	
Measurement functions	Number of channels: 2, for voltage measurement
Input connectors	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to earth: $300 \mathrm{~V} \mathrm{AC}, \mathrm{DC}$ (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Measurement range	5 mV to $20 \mathrm{~V} /$ div, 12 ranges, full scale: 20 div , AC voltage for possible measurement/display using the memory function: 280 V rms , Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 50 \mathrm{k} / 500 \mathrm{kHz}$
Measurement resolution	$1 / 100$ of measurement range (using 12-bit A / D conversion and when installed in the 8847)
Highest sampling rate	$20 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling across 2 channels)
Measurement accuracy	$\pm 0.5 \%$ of full scale (with filter 5 Hz , zero position accuracy included)
Frequency characteristics	DC to $5 \mathrm{MHz}-3 \mathrm{~dB}$, (with AC coupling: 7 Hz to $5 \mathrm{MHz}-3 \mathrm{~dB}$)
Input coupling	AC/DC/GND
Max. allowable input	400 V DC (the maximum voltage that can be applied across input pins without damage)

Dimensions and mass: approx. 106 (4.17in) W $\times 19.8$ (0.78 in) $\mathrm{H} \times 204.5$ (8.05in) D mm, approx. $240 \mathrm{~g}(8.5 \mathrm{oz})$ Accessories: Ferrite clamp $\times 2$

1P	(Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time and zero adjustment; Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)
Measurement functions	Number of channels: 2 , for temperature measurement with thermocouple (voltage measurement not available)
Input connectors	Thermocouple input: plug-in connector, Recommended wire diameter: single-wire, 0.14 to $1.5 \mathrm{~mm}^{2}$, braided wire 0.14 to $1.0 \mathrm{~mm}^{2}$ (conductor wire diameter min. 0.18 mm), AWG 26 to 16 Input impedance: min. $5 \mathrm{M} \Omega$ (with line fault detection ON/OFF), Max. rated voltage to earth: 300 V AC , DC (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Temperature measurement range Note: Upper and lower limit values depend on the thermocouple	$10^{\circ} \mathrm{C} / \operatorname{div}\left(-100^{\circ} \mathrm{C}\right.$ to $\left.200^{\circ} \mathrm{C}\right), 50^{\circ} \mathrm{C} / \operatorname{div}\left(-200^{\circ} \mathrm{C}\right.$ to $\left.1000^{\circ} \mathrm{C}\right), 100^{\circ} \mathrm{C} /$ div $\left(-200^{\circ} \mathrm{C}\right.$ to $\left.2000^{\circ} \mathrm{C}\right), 3$ ranges, full scale: 20 div, Measurement resolution: $1 / 1000$ of measurement range (using 16 -bit A/D conversion and when installed in the 8847)
Thermocouple range (JIS C 1602-1995) (ASTM E-988-96)	K: -200 to $1350{ }^{\circ} \mathrm{C}$, J: -200 to $1100^{\circ} \mathrm{C}$, E: -200 to $800^{\circ} \mathrm{C}$, T: -200 to $400^{\circ} \mathrm{C}, \mathrm{N}:-200$ to $1300^{\circ} \mathrm{C}, \mathrm{R}: 0$ to $1700^{\circ} \mathrm{C}, \mathrm{S}: 0$ to $1700^{\circ} \mathrm{C}, \mathrm{B}$: 400 to $1800^{\circ} \mathrm{C}, \mathrm{W}$ (WRe5-26): 0 to $2000^{\circ} \mathrm{C}$, Reference junction compensation: internal/ external (switchable), Line fault detection ON/OFF possible
Data refresh rate	3 methods, Fast: 1.2 ms (digital filter OFF), Normal: 100 ms (digital filter $50 / 60 \mathrm{~Hz}$), Slow: 500 ms (digital filter 10 Hz)
Measurement accuracy	```Thermocouple K, J, E, T, N: \(\pm 0.1 \%\) of full scale \(\pm 1{ }^{\circ} \mathrm{C}\left(\pm 0.1 \%\right.\) of full scale \(\pm 2^{\circ} \mathrm{C}\) at \(-200^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\)), Thermocouple R, S, W: \(\pm 0.1 \%\) of full scale \(\pm 3.5^{\circ} \mathrm{C}\) (at \(0^{\circ} \mathrm{C}\) to \(400^{\circ} \mathrm{C}\) or less), \(\pm 0.1\) \(\%\) of full scale \(\pm 3^{\circ} \mathrm{C}\) (at \(400^{\circ} \mathrm{C}\) or more) Thermocouple B: \(\pm 0.1 \%\) of full scale \(\pm 3^{\circ} \mathrm{C}\) (at \(400^{\circ} \mathrm{C}\) or more), Reference junction compensation accuracy: \(\pm 1.5^{\circ} \mathrm{C}\) (added to measurement accuracy with internal reference junction compensation)```

Dimensions and mass: approx. 106 (4.17in) W $\times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74in) D mm,
approx. 250 g (8.8 oz) Accessories: None
HIGH RESOLUTION UNIT 8968 (Accuracy at $23 \pm^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time and zero

Measurement functions	Number of channels: 2, for voltage measurement

Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF),
Max. rated voltage to earth: $300 \mathrm{~V} \mathrm{AC}, \mathrm{DC}$ (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Input connectors

5 mV to $20 \mathrm{~V} /$ div, 12 ranges, full scale: 20 div , AC voltage for possible measurement/display using the memory function: 280 V rms ,
Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 50 \mathrm{k} \mathrm{Hz}$
Integrated filter for suppressing aliasing distortion caused by FFT
Measurement range

Anti-aliasing filter processing (automatic cutoff frequency setting/OFF)
Measurement resolution 1/1600 of measurement range (using 16-bit A / D conversion and when installed in the 8847)
Highest sampling rate $1 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling across 2 channels)
Measurement accuracy $\pm 0.3 \%$ of full scale (with filter 5 Hz , zero position accuracy included)
Frequency characteristics DC to $100 \mathrm{kHz}-3 \mathrm{~dB}$, (with AC coupling: 7 Hz to $100 \mathrm{kHz}-3 \mathrm{~dB}$)
Input coupling AC/DC/GND

Max. allowable input	400 V DC (the maximum voltage that can be applied across input pins without damage)

Dimensions and mass: approx. 106 (4.17in) W $\times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74 in) D mm, approx. $220 \mathrm{~g}(7.8 \mathrm{oz})$ Accessories: Conversion cable 9769×2 (cable length $50 \mathrm{~cm} / 1.64 \mathrm{ft}$)

STRAIN UNIT 8969	
Measurement functions	Number of channels: 2, for distortion measurement (electronic auto-balancing, balance adjustment range within $\pm 10000 \mu \varepsilon$)
Input connectors	Weidmuller SL 3.5/7/90G (via Conversion Cable 9769, TAJIMI PRC03-12A107M10.5) Max. rated voltage to earth: 33 Vrms or 70 V DC (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Suitable transducer	Strain gauge converter, Bridge impedance: 120Ω to $1 \mathrm{k} \Omega$, Bridge voltage: $2 \mathrm{~V} \pm 0.05 \mathrm{~V}$, Gauge rate: 2.0
Measurement range	$20 \mu \varepsilon$ to $1000 \mu \varepsilon /$ div, 6 ranges, full scale: 20 division, Low-pass filter: $5 / 10 / 100 \mathrm{~Hz}, 1 \mathrm{kHz}$
Measurement resolution	$1 / 1250$ of measurement range (using 16 -bit A / D conversion and when installed in the 8847)
Highest sampling rate	$200 \mathrm{kS} / \mathrm{s}$ (simultaneous sampling across 2 channels)
Measurement accuracy	$\pm(0.5 \%$ of full scale $+4 \mu \varepsilon)$ (at 5 Hz filter ON, After auto-balancing)
Frequency characteristics	DC to $20 \mathrm{kHz}+1 /-3 \mathrm{~dB}$

Dimensions and mass: approx. 106 (4.17in) $\mathrm{W} \times 19.8$ (0.78in) $\mathrm{H} \times 196.5$ (7.74in) D mm,
approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$ Accessories: None

FREQ UNIT 8970 (Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time; Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)	
Measurement functions	Number of channels: 2, for voltage input based frequency measurement, rotation, power frequency, integration, pulse duty ratio, pulse width
Input connectors	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to earth: $300 \mathrm{~V} \mathrm{AC}, \mathrm{DC}$ (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Frequency mode	Range: Between DC to 100 kHz (minimum pulse width $2 \mu \mathrm{~s}$), $1 \mathrm{~Hz} /$ div to $5 \mathrm{kHz} / \mathrm{div}$ (full scale $=20$ div), 8 settings Accuracy: $\pm 0.1 \%$ f.s. (exclude $5 \mathrm{kHz} / \mathrm{div}$), $\pm 0.7 \%$ f.s. (at $5 \mathrm{kHz} / \mathrm{div}$)
Rotation mode	Range: Between 0 to 2 million rotations/minute (minimum pulse width $2 \mu \mathrm{~s}$, $100(\mathrm{r} / \mathrm{min}) /$ div to $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div (full scale $=20 \mathrm{div}), 7$ settings Accuracy: $\pm 0.1 \%$ f.s. (excluding $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div),$\pm 0.7 \%$ f.s. (at $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div)
Power frequency mode	Range: $50 \mathrm{~Hz}(40-60 \mathrm{~Hz}), 60 \mathrm{~Hz}(50-70 \mathrm{~Hz}), 400 \mathrm{~Hz}(390-410 \mathrm{~Hz})$ (full scale $=20$ div), 3 settings Accuracy: $\pm 0.03 \mathrm{~Hz}$ (exclude 400 Hz range), $\pm 0.1 \mathrm{~Hz}$ (400 Hz range)
Integration mode	Range: 2 k counts/div to 1 M counts/div, 6 settings Accuracy: \pm range/2000
Duty ratio mode	Range: Between 10 Hz to 100 kHz (minimum pulse width $2 \mu \mathrm{~s}$), $5 \% /$ div (full scale=20 div) Accuracy: $\pm 1 \%$ (10 Hz to 10 kHz), $\pm 4 \%$ (10 kHz to 100 kHz)
Pulse width mode	Range: Between $2 \mu \mathrm{~s}$ to $2 \mathrm{sec}, 500 \mu \mathrm{~s} /$ div to $100 \mathrm{~ms} / \mathrm{dv}$ (full scale $=20$ div) Accuracy: $\pm 0.1 \%$ f.s.
Measurement resolution	$1 / 2000$ of range (Integration mode), $1 / 500$ of range (exclude integration, power frequency mode), $1 / 100$ of range (power frequency mode)
Input voltage range and threshold level	$\pm 10 \mathrm{~V}$ to $\pm 400 \mathrm{~V}, 6$ settings, selectable threshold level at each range
Other functions	Slope, Level, Hold, Smoothing, Low-pass filter, Switchable DC/AC input coupling, Frequency dividing, Integration over-range keep/ return

Dimensions and mass: approx. 106 (4.17in) $\mathrm{W} \times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74in) D mm, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$ Accessories: CONVERSION CABLE 9318×2 (To connect the current sensor to the 8971)

CURRENT UNIT $8971 \begin{gathered}\text { (Accuracy a } 23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \text {, } 20 \text { to } 80 \% \text { rh after } 30 \text { minutes of warm-up time and zero } \\ \text { adjustment; Accuracy guaranteed for } 1 \text { year, Post-adjustment accuracy guaranteed for } 1 \text { year) }\end{gathered}$

Measurement functions	Number of channels: 2, Current measurement with optional current sensor, Maximum 4 units connectable to the 8847
Input connectors	Sensor connector (input impedance $1 \mathrm{M} \Omega$, exclusive connector for current sensor via conversion cable the 9318 , common ground with recorder)
Compatible current sensors	CT6863, CT6862, 9709, 9279, 9278, 9277, 9272-10 (To connect the 8971 via conversion cable the 9318)
Measurement range	Using 9272-10 (20A), 9277: 100 mA to $5 \mathrm{~A} / \mathrm{div}$ (f.s. $=20 \mathrm{div}, 6$ settings) Using CT6862: 200mA to 10A/div (f.s. = 20 div, 6 settings) Using 9272-10 (200A), 9278, CT6863: 1A to 50A/div (f.s.=20div, 6 settings) Using 9279, 9709: 2A to 100A/div (f.s. = $=20$ div, 6 settings)
Accuracy	Using 9278, 9279: $\pm 0.85 \%$ f.s. Using other sensor: $\pm 0.65 \%$ f.s. RMS amplitude accuracy: $\pm 1 \%$ f.s. (DC, 30 Hz to 1 kHz), $\pm 3 \%$ f.s. (1 kHz to 10 kHz) RMS response time: 100 ms (rise time from 0 to 90% of full scale), Crest factor: 2 Frequency characteristics: DC to $100 \mathrm{kHz}, \pm 3 \mathrm{~dB}$ (with AC coupling: 7 Hz to 100 kHz)
Measurement resolution	1/100 of range
Highest sampling rate	$1 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling across 2 channels)
Other functions	Input coupling: AC/DC/GND, Low-pass filter: $5,50,500,5 \mathrm{k}, 50 \mathrm{kHz}$, or OFF

Options specifications (sold separately)

Dimensions and mass: approx. 106 (4.17in) $\mathrm{W} \times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74in) D mm approx. 250 g (8.8 oz) Accessories: None

| DC/RMS UNIT 8972 | (Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time and zero
 adjustment; Accuracy guaranted for 1 year, Post-adjustment accuracy guaranted for lyear) |
| :--- | :--- | :--- |
| Measurement functions | Number of channels: 2 , for voltage measurement, DC/RMS selectable |
| Input connectors | Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF),
 Max. rated voltage to earth: $300 \mathrm{~V} \mathrm{AC} ,\mathrm{DC} \mathrm{(with} \mathrm{input} \mathrm{isolated} \mathrm{from} \mathrm{the}$
 unit, the maximum voltage that can be applied between input channel and chassis
 and between input channels without damage) |
| Measurement range | 5 mV to $20 \mathrm{~V} /$ div, 12 ranges, full scale: 20 div, AC voltage for possible
 measurement/display using the memory function: 280 V rms,
 Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 100 \mathrm{kHz}$ |
| Measurement resolution | $1 / 100$ of measurement range (using 12 -bit A/D conversion and when installed in 8847) |

Cable length and mass: Main unit cable $1.5 \mathrm{~m}(4.92 \mathrm{ft})$, input section cable 30 cm (0.98 ft) approx $150 \mathrm{~g}(5.3 \mathrm{oz})$
Note: The unit-side plug of the 9320-01 is different from the 9320

LOGIC PROBE 9320-01/9327

Function

Input

Digital input threshold
Contact input detection resistance

Response speed
Max. allowable input

Detection of voltage signal or relay contact signal for High/Low state recording 4 channels (common ground between unit and channels), digital/contact input, switchable (contact input can detect open-collector signals) Input resistance: $1 \mathrm{M} \Omega$ (with digital input, 0 to +5 V)
$500 \mathrm{k} \Omega$ or more (with digital input, +5 to +50 V)
Pull-up resistance: $2 \mathrm{k} \Omega$ (contact input: internally pulled up to +5 V)
$1.4 \mathrm{~V} / 2.5 \mathrm{~V} / 4.0 \mathrm{~V}$
$1.4 \mathrm{~V}: 1.5 \mathrm{k} \Omega$ or higher (open) and 500Ω or lower (short)
$2.5 \mathrm{~V}: 3.5 \mathrm{k} \Omega$ or higher (open) and $1.5 \mathrm{k} \Omega$ or lower (short)
$4.0 \mathrm{~V}: 25 \mathrm{k} \Omega$ or higher (open) and $8 \mathrm{k} \Omega$ or lower (short)
9320-01: 500ns or lower, 9327: detectable pulse width 100 ns or higher 0 to +50 V DC (the maximum voltage that can be applied across input pins without damage)

Cable length and mass: Main unit cable 1.5 m (4.92 ft), input section cable 1 m (3.28 ft), approx. 320 g (11.3 oz) Note: The unit-side plug of the MR9321-01 is different from the MR9321.

LOGIC PROBE MR9321-01	
Function	Detection of AC or DC relay drive signal for High/Low state recording Can also be used for power line interruption detection
Input	4 channels (isolated between unit and channels), HIGH/LOW range switching Input resistance: $100 \mathrm{k} \Omega$ or higher (HIGH range), $30 \mathrm{k} \Omega$ or higher (Low range)
Output (H) detection	170 to $250 \mathrm{~V} \mathrm{AC}, \pm \mathrm{DC} 70$ to 250 V (HIGH range) 60 to $150 \mathrm{~V} \mathrm{AC}, \pm \mathrm{DC} 20$ to 150 V (LOW range)
Output (L) detection	0 to $30 \mathrm{~V} \mathrm{AC}, \pm \mathrm{DC} 0$ to 43 V (HIGH range) 0 to $10 \mathrm{~V} \mathrm{AC}, \pm \mathrm{DC} 0$ to 15 V (LOW range)
Response time	Rising edge $1 \mathrm{~ms} \mathrm{max.}$,falling edge 3 ms max. (with HIGH range at 200 V DC, Low range at $100 \mathrm{~V} \mathrm{DC)}$
Max. allowable input	250 Vrms (HIGH range), 150 Vrms (LOW range) (the maximum voltage that can be applied across input pins without damage)

DIFFERENTIAL PROBE P9000	(Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)
Measurement modes	P9000-01: For waveform monitor output, Frequency properties: DC to 100 kHz $-3 \mathrm{~dB}$ P9000-02: Switches between waveform monitor output/AC effective value output Wave mode frequency properties: DC to $100 \mathrm{kHz}-3 \mathrm{~dB}, \mathrm{RMS}$ mode frequency properties: 30 Hz to 10 kHz , Response time: Rise 300 ms , Fall 600 ms
Division ratio	Switches between 1000:1, 100:1
DC output accuracy	$\pm 0.5 \%$ f.s. (f.s. $=1.0 \mathrm{~V}$, division ratio $1000: 1$), (f.s. $=3.5 \mathrm{~V}$, division ratio $100: 1$)
Effective value measurement accuracy	$\pm 1 \%$ f.s. (30 Hz to less than 1 kHz , sine wave), $\pm 3 \%$ f.s. (1 kHz to 10 kHz , sine wave)
Input resistance/capacity	H-L: $10.5 \mathrm{M} \Omega, 5 \mathrm{pF}$ or less (at 100 kHz)
Maximum input voltage	1000 V AC, DC
Maximum rated voltage to ground	1000 V AC, DC (CAT III)
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$
Power supply	(1) AC adapter Z1008 (100 to $240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$), 6 VA (including AC adapter), 0.9 VA (main unit only) (2) USB bus power (5 V DC, USB-microB terminal), 0.8 VA (3) External power source 2.7 V to 15 V DC, 1 VA
Accessories	Instruction manual $\times 1$, Alligator clip $\times 2$, Carrying case $\times 1$

Dimensions and mass: approx. 106 (4.17in) $\mathrm{W} \times 19.8$ (0.78 in) $\mathrm{H} \times 196.5$ (7.74in) D mm, approx. 190 g (6.7 oz) Accessories: None

LOGIC UNIT 8973

Measurement functions	Number of channels: 16 channels ($4 \mathrm{ch} / 1$ probe connector $\times 4$ connectors)

Input connectors
Mini DIN connector (for HIOKI logic probes only)
Compatible logic probes: 9320-01, 9327, 9321-01

Dimensions and mass: approx. 290 (11.42in) W $\times 29$ (1.14in) H $\times 219.5$ (8.64in) D mm, approx. $1.2 \mathrm{~kg}(42.3 \mathrm{oz})$ Accessories: None

DC POWER UNIT 9784

Rated input voltage 10 to 28 V DC

Power requirements 200 VA (printer used)

Note: Factory-installed option, build in on the rear of the main unit

\square Analyzing data on a computer

WAVE PROCESSOR 9335 (option)

- Waveform display and calculation

- Print function

LAN COMMUNICATOR 9333 (option)

- Collect waveform data
- Remotely control Memory HiCorders with a PC
- Save data in CSV format and export to spreadsheet applications
- iPad App for Memory HiCorder HMR Terminal (option)
Free app (exclusively for iPad) downloadable from App Store
- iPad-unique gestures let you analyze measurement data any way you like
- Supports MR8740/41 and MEM data from MR8847s

Wave Viewer (Wv) Software (bundled software)

- Confirmation of binary data waveforms on a computer
- Saving data in the CSV format for transfer to spreadsheet software

■ 9335 Outline specifications (option)
Operating environment Windows 8/7 (32/64-bit), Vista (32-bit), XP

- Display: Waveform display, X-Y display, cursor function, etc. File loading: Readable data formats (.MEM, .REC, .RMS, .POW) Largest readable file: Largest file that can be saved by supported instruments (Supported file size may be limited due to computer's operating environment.)
Data conversion: Conversion to CSV format, batch conversion of multiple files
Print function: Saving of print image files (with support for enhanced
Print metafile [EMF] format)
- Print format: Select from no tiling, 2 to 16 tiles, 2 to 16 rows, X/Y 1 to 4 tiles, preview/hard copy

■ 9333 Outline specifications (option)
Operating environment Windows 8/7 (32/64-bit), Vista (32-bit), XP, (The 9333 ver.1.09 or later)

- Auto-saves waveform data to PC, Remote control of Memory HiCorder (by sending key codes and receiving images on screen), print reports, print images from the screen, receive waveform data in same format as waveform files from the Memory HiCorder (binary only) Waveform data acquisition: Accept auto-saves from the Memory HiCorder, same format as auto-save files of Memory HiCorder (binary only), print automatically with a Memory HiCorder from a PC. The Memory HiCorder's print key launches printouts on the PC Waveform viewer: Simple display of waveform files, conversion to CSV format, or other

■ HMR Terminal Outline specifications (free software)
Operating environment Apple iPad

> | - Data acquisition: Send to iPad via FTP using a WiFi router, or load to |
| :--- |
| iPad via iTunes (PC app) |
| - Waveform level search, maximum value/minimum value/average value, |
| Intuitive fingertip manipulation of channel zero position, or other |
| - Waveform viewing |
| - Setting configuration for the Memory HiCorder |
| * Not support logic waveform, processing waveform |

■ Wave Viewer (Wv) Outline specifications (bundled software)
Operating environment Windows $8 / 7$ (32/64-bit), Vista (32-bit), XP, 2000
Functions

- Simple display of waveform file
- Convert binary data file to text format, CSV
- Scroll display, enlarge/reduce, jump to cursor/trigger position, etc.

ANALOG UNIT 8966 Reammantrg 2 ch , Votage input, DC to 5 MHz bandwidh TEMP UNIT 8967 2 ch , thermocouple temperature input HIGH RESOLUTION UNIT 8968 2 ch , voltage input, DC to 100 kHz bandwidth STRAIN UNIT 8969 2 ch , strain gauge type converter amp Conversion Cable 9769 For the 8969(MR8847/8827 series), bundled with the 8969 TREQ UNIT 8970 2 ch , for measurement of frequency, rpm, pulse, etc. CURRENT UNIT 8971 2 ch , for measuring current using dedicated current sensors, bundled two Conversion cable 9318 *The Current unit 8971 up to four module DC/RMS UNIT 8972 2 ch , voltage/DC to 400 kHz , RMS rectifier, DC and 30 to 100 kHz bandwidth LOGIC UNIT 8973 4 terminals, 16 ch *Max. up to two modules of the Logic unit 8973	

Order Code: MR8847-01
(Max. 16ch, 64MW memory, main unit only)
Order Code: MR8847-02
(Max. 16ch, 256MW memory, main unit only)
Order Code: MR8847-03
(Max. 16ch, 512MW memory, main unit only)

WAVE PROCESSOR 9335 Convert data, print and display waveforms

CARR
9783
9783 CASE
Includes compartment for
options, Hard trunk type, also suitable for transporting
the MR8847s

Power supply for sensor Necessary for wes high precision current sensors
SENSOR UNIT 9555-10
For signal output L. 29277 is necessary
CONNECTION CORD L9217

 DC to 10 KHz (-3BB), 100A, Output 0. 1 V VI.s., bundeded the Sensor Unit CT6590
CLAMP ON AC/DC SENSOR CT9692-90 DC to 20kHz (-30BB), 200A, Output $0.2 \mathrm{~V} / \mathrm{I}$.s. bundled the Sensor Unit CT6590
CLAMP ON ACIDC SENSOR CT9693-90 DC to $15 \mathrm{KHz}(-30 \mathrm{~B}), 2000 \mathrm{~A}$, Output $0.2 \mathrm{~V} / \mathrm{f}$. . bundled the Sensor Unit CT6590

HIOKI

HIOKI E. E. CORPORATION

HEADQUARTERS

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com / E-mail: os-com@hioki.co.jp

[^0]HIOKI INDIA PRIVATE LIMITED
TEL +91-124-6590210 FAX +91-124-6460113 E-mail: hioki@hioki.in
HIOKI SINGAPORE PTE. LTD.
TEL +65-6634-7677 FAX +65-6634-7477
E-mail: info-sg@hioki.com.sg
HIOKI USA CORPORATION
HIOKI KOREA CO., LTD.
TEL +82-2-2183-8847 FAX + 82-2-2183-3360

[^0]: HIOKI (Shanghai) SALES \& TRADING CO., LTD TEL +86-21-63910090 FAX +86-21-63910360

